Let's look at the lunge. Let's say I have a client lunging, but they're wobbly. How should I regress the exercise?

A. Allow the client to support themselves against the wall **B.** Decrease the number of reps that the client is doing C. Have the client do a backflip D. Make sure you like the video

A. Allow the client to support themselves against the wall **B. Decrease the number of reps that** the client is doing C. Have the client do a backflip D. Make sure you like the video

Let's say I have a beginner client lunging, they're doing great, and I need to make the exercise harder. How should progress the exercise?

A. Have the client do jumping lunges **B. Tell the client to perform the** movement faster C. Subscribe to the channel D. Give the client light dumbbells to hold onto while doing the exercise

A. Have the client do jumping lunges **B. Tell the client to perform the** movement faster C. Subscribe to the channel 😎 \checkmark D. Give the client light dumbbells to hold onto while doing the exercise

Let's say I have a client who's squatting and leaning too far forward. Choose the best cueing advice to give this client.

A. Tell the client their squat is a mess B. Tell the client to shift the weight back onto the ball of their foot, heels, and hips **C.** Hand the client light weights for increased stability **D. Stop the squat immediately and don't** have that client do them anymore

A. Tell the client their squat is a mess B. Tell the client to shift the weight back onto the ball of their foot, heels, and hips **C. Hand the client light weights for** increased stability **D. Stop the squat immediately and don't** have that client do them anymore

Let's take that same client who's squatting and leaning too far forward. Now tell me what muscles are likely overactive and which are underactive.

A. Overactive: Hip Flexors **Underactive: Tensor Fasciae Latae B. Overactive: Glutes Underactive: Hamstrings C.** Overactive: Hip Flexors Underactive: Glutes D. Overactive: Glutes Underactive: Adductors

A. Overactive: Hip Flexors **Underactive: Tensor Fasciae Latae B. Overactive: Glutes Underactive: Hamstrings C. Overactive: Hip Flexors Underactive: Glutes D. Overactive: Glutes Underactive: Adductors**

Next up lets talk about <u>agonists</u> and <u>antagonists</u>.

An <u>agonist</u> is the prime mover or muscle that does

most of the work during a specific exercise. An

<u>antagonist</u> is the muscle that opposes the <u>agonist</u>.

The easiest example of this is the biceps and triceps. When I'm doing a biceps curl the biceps are the agonist, meaning they do most of the work. The opposing muscle group, the triceps, would be the antagonist.

So, if I am doing a leg extension, what muscle group is the agonist and what muscle group is the antagonist?

The agonist would be the quadricep muscles.

The antagonist would be the hamstring muscles.

What is the agonist or prime mover of the exercise being shown, and what is the antagonist muscle?

A. Agonist: Hamstrings Antagonist: Glutes B. Agonist: Gastrocnemius **Antagonist: Tibialis Anterior C. Agonist: Hip Flexors Antagonist: TFL** D. Agonist: Hamstrings Antagonist: Quadriceps

You also have synergists which assist prime movers or agonists with movements.

Synergistic dominance: Synergist compensates for an underactive agonist.

Force-couple relationship: Two or more muscles working

together to create movement around a joint.

Stabilizers: Muscles that stabilize

movement around a joint.

Ex: rotator cuff muscles when

bench pressing

Reciprocal Inhibition: The relaxation of muscles on one side of a joint to accommodate contraction on the other side. Autogenic Inhibition: The ability of a muscle to relax when it experiences a stretch or increased tension.

Relative Flexibility: When the body moves, joints and soft tissues will move along the path of least resistance. **Altered Reciprocal inhibition:** When an agonist is too tight which causes decreased neural drive to the antagonist.

Golgi Tendon Organ (GTO): Muscle Spindle: Located at the point where Sensory organs that the muscle and tendon lie <u>parallel</u> to the meet (musculotendinous muscle fibers. They detect muscle length junction). The GTO is and the speed/rate sensitive to change in muscle tension and the at which a muscle is speed of tension change. stretching.

Muscle Spindle

Golgi Tendon Organs

Gontraction Types

First up we have static or isometric contractions. These contractions occur when there is no change in muscle length.

An <u>concentric</u> contraction is when a muscle shortens.

An <u>eccentric</u> contraction is when a muscle lengthens.

Random Stuff

to know

Davis Law

Soft tissue models along imposed demands. This explains how a muscle will lengthen or shorten in response to stretch or load. You become your lifestyle. ::3

Wolf's law is similar but applies to bone.

<u>Local core muscles:</u> Generally

attach on or near the vertebrae.

They're important for stabilizing

the vertebrae and limiting

strain on the spine.

(transverse abdominus,

Quadratus lumborum)

<u>Global core muscles:</u> More

superficial. They're more

involved when it comes to

moving the trunk.

(rectus abdominus, psoas)

Epimysium: The fibrous outer tissue envelope that surrounds muscle. **Perimysium: The sheath of connective tissue** surrounding a bundle of muscle fibers. Endomysium: (Inner layer) Surrounds individual muscle fibers within skeletal muscles

Ligaments: attach bone to bone Tendons: attach muscle to bone UPPER BOD LOWER BODY Learn Anatomy

Three stages of learning Cognitive: Still learning Associative: Starting to understand Autonomous: Learned/automatic

Speed: Moving quickly in one direction (sprints)

Agility: The ability to change direction and maintain speed, balance, and coordination (LEFT drill)

Quickness: Reacting to a stimulus in multiple planes of motion (ladder drills)

Training For youths/kids/adolescents

- Adolescents: 60 minutes 3 or more days of the week or 3 days per week if
- vigorous. Emphasize balance, skill, and controlled movements. 2-3 days resist.
- 1-2 sets of 8-10 exercises 8-12 reps per exercise (40-70% int.)
- with increases in overload in reps first, then weight
- Progression of aerobic training volume should not
- exceed 10% per period of adaptation

Training For Older Adults

- 3-5 days per week of moderate-intensity activities
- or 3 days per week of vigorous-intensity activities
- Intensity = 45-80% of VO2 peak
- lower initial weights and slower progression
- 1-3 sets of 8-20 repetitions at 40-80% intensity
- Progression should be slow, well monitored, and based on postural control.
- Valsalva maneuver: Avoid this with all clients, especially the elderly. It's a
- breathing technique that involves forcefully exhaling air against a closed airway.